Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38612533

RESUMO

Colorectal cancer (CRC) screening relies primarily on stool analysis to identify occult blood. However, its sensitivity for detecting precancerous lesions is limited, requiring the development of new tools to improve CRC screening. Carcinogenesis involves significant alterations in mucosal epithelium glycocalyx that decisively contribute to disease progression. Building on this knowledge, we examined patient series comprehending premalignant lesions, colorectal tumors, and healthy controls for the T-antigen-a short-chain O-glycosylation of proteins considered a surrogate marker of malignancy in multiple solid cancers. We found the T-antigen in the secretions of dysplastic lesions as well as in cancer. In CRC, T-antigen expression was associated with the presence of distant metastases. In parallel, we analyzed a broad number of stools from individuals who underwent colonoscopy, which showed high T expressions in high-grade dysplasia and carcinomas. Employing mass spectrometry-based lectin-affinity enrichment, we identified a total of 262 proteins, 67% of which potentially exhibited altered glycosylation patterns associated with cancer and advanced pre-cancerous lesions. Also, we found that the stool (glyco)proteome of pre-cancerous lesions is enriched for protein species involved in key biological processes linked to humoral and innate immune responses. This study offers a thorough analysis of the stool glycoproteome, laying the groundwork for harnessing glycosylation alterations to improve non-invasive cancer detection.


Assuntos
Neoplasias Colorretais , Lesões Pré-Cancerosas , Humanos , Neoplasias Colorretais/diagnóstico , Hiperplasia , Carcinogênese , Antígenos Virais de Tumores
2.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542435

RESUMO

Muscle-invasive bladder cancer (MIBC) remains a pressing health concern due to conventional treatment failure and significant molecular heterogeneity, hampering the development of novel targeted therapeutics. In our quest for novel targetable markers, recent glycoproteomics and bioinformatics data have pinpointed (glucose transporter 1) GLUT1 as a potential biomarker due to its increased expression in tumours compared to healthy tissues. This study explores this hypothesis in more detail, with emphasis on GLUT1 glycosylation patterns and cancer specificity. Immunohistochemistry analysis across a diverse set of human bladder tumours representing all disease stages revealed increasing GLUT1 expression with lesion severity, extending to metastasis, while remaining undetectable in healthy urothelium. In line with this, GLUT1 emerged as a marker of reduced overall survival. Revisiting nanoLC-EThcD-MS/MS data targeting immature O-glycosylation on muscle-invasive tumours identified GLUT1 as a carrier of short glycosylation associated with invasive disease. Precise glycosite mapping uncovered significant heterogeneity between patient samples, but also common glycopatterns that could provide the molecular basis for targeted solutions. Immature O-glycosylation conferred cancer specificity to GLUT1, laying the molecular groundwork for enhanced targeted therapeutics in bladder cancer. Future studies should focus on a comprehensive mapping of GLUT1 glycosites for highly specific cancer-targeted therapy development for bladder cancer.


Assuntos
Espectrometria de Massas em Tandem , Neoplasias da Bexiga Urinária , Humanos , Glicosilação , Transportador de Glucose Tipo 1/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Bexiga Urinária/patologia
3.
ACS Nano ; 18(14): 10088-10103, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38535625

RESUMO

Advanced-stage solid primary tumors and metastases often express mucin 16 (MUC16), carrying immature glycans such as the Tn antigen, resulting in specific glycoproteoforms not found in healthy human tissues. This presents a valuable approach for designing targeted therapeutics, including cancer glycovaccines, which could potentially promote antigen recognition and foster the immune response to control disease spread and prevent relapse. In this study, we describe an adjuvant-free poly(lactic-co-glycolic acid) (PLGA)-based nanoglycoantigen delivery approach that outperforms conventional methods by eliminating the need for protein carriers while exhibiting targeted and adjuvant properties. To achieve this, we synthesized a library of MUC16-Tn glycoepitopes through single-pot enzymatic glycosylation, which were then stably engrafted onto the surface of PLGA nanoparticles, generating multivalent constructs that better represent cancer molecular heterogeneity. These glycoconstructs demonstrated affinity for Macrophage Galactose-type Lectin (MGL) receptor, known to be highly expressed by immature antigen-presenting cells, enabling precise targeting of immune cells. Moreover, the glycopeptide-grafted nanovaccine candidate displayed minimal cytotoxicity and induced the activation of dendritic cells in vitro, even in the absence of an adjuvant. In vivo, the formulated nanovaccine candidate was also nontoxic and elicited the production of IgG specifically targeting MUC16 and MUC16-Tn glycoproteoforms in cancer cells and tumors, offering potential for precise cancer targeting, including targeted immunotherapies.


Assuntos
Nanopartículas , Neoplasias , Humanos , Lectinas/metabolismo , Glicosilação , Glicopeptídeos/metabolismo , Neoplasias/terapia , Neoplasias/metabolismo , Imunoterapia/métodos , Células Dendríticas
4.
J Control Release ; 367: 540-556, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38301927

RESUMO

Cancer presents a high mortality rate due to ineffective treatments and tumour relapse with progression. Cancer vaccines hold tremendous potential due to their capability to eradicate tumour and prevent relapse. In this study, we present a novel glycovaccine for precise targeting and immunotherapy of aggressive solid tumours that overexpress CD44 standard isoform (CD44s) carrying immature Tn and sialyl-Tn (sTn) O-glycans. We describe an enzymatic method and an enrichment strategy to generate libraries of well-characterized cancer-specific CD44s-Tn and/or sTn glycoproteoforms, which mimic the heterogeneity found in tumours. We conjugated CD44-Tn-derived glycopeptides with carrier proteins making them more immunogenic, with further demonstration of the importance of this conjugation to overcome the glycopeptides' intrinsic toxicity. We have optimized the glycopeptide-protein maleimide-thiol conjugation chemistry to avoid undesirable cross-linking between carrier proteins and CD44s glycopeptides. The resulting glycovaccines candidates were well-tolerated in vivo, inducing both humoral and cellular immunity, including immunological memory. The generated antibodies exhibited specific reactivity against synthetic CD44s-Tn glycopeptides, CD44s-Tn glycoengineered cells, and human tumours. In summary, we present a promising prototype of a cancer glycovaccine for future therapeutical pre-clinical efficacy validation.


Assuntos
Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Combinadas , Antígenos Glicosídicos Associados a Tumores/química , Glicoconjugados , Neoplasias/terapia , Imunoterapia , Glicopeptídeos/química , Proteínas de Transporte , Recidiva , Receptores de Hialuronatos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...